
Solution exercise set 3

Problem 1

The diffusion of the water tracing solution in the pipe follows the solution of the diffusion equation
in one dimension

ρ(x, t) =
Cste√
4πDt

e−
x2

4Dt (1)

with ρ(x) the density assumed to be constant over the radial coordinates in the pipe (narrow pipe),
D the diffusion coefficient and Cste = M

A . This solution is valid for a point source (infinite concen-
tration at a point at t = 0). In Problem 2 we will show that the integral of the solution (1) over the
space variable x does not change in time (in other words the mass of water tracing solution remains
constant). However, we see from (1) that ρ(x = 0) → ∞ and ρ(x 6= 0) → 0 when t → 0. This
means that when the time goes to zero, we model the ideal injection of mass by an infinite peak
of concentration centered at x = 0, however, since the peak is infinitely narrow, the total mass is
finite (integral of the concentration over x).

• Using (1) we see that the concentration at x = 0 diverges when t → 0. In the next exercise
set we will see a more realistic description of the intitial state taking into account the volume
of the solution injected. The point source approximation is a good approximation for some
problems but would fail when the volume of the injected solution needs to be taken into
account.

• The standard deviation after one second σ is given by

σ =
√

2Dt ≈ 0.005cm (2)

• The maximal concentration is always at x=0 and is given by the simple expression

Cste√
4πDt

(3)

t [h]
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• Here we compare the solution at x = 0 cm (where the maximum is) and at x = 100 cm. As

a result we get that ρ(x=0,t)
ρ(x=100,t) = 100

95 for t ≈ 119 years !! Molecular diffusion is not sufficient
to effectively reach a state with a homogeneous concentration.

Problem 2

Using the change of variables α = x
2
√
Dt

we get that the total mass is given by

A · Cste√
π

∫ ∞
−∞

e−α
2
dα (4)

and the variance is given by
4Dt√
π

∫ ∞
−∞

α2e−α
2
dα. (5)

Recall that D is the diffusion coefficient and Cste = M
A . Now we need to compute the two integrals

I =
∫∞
−∞ e

−α2
dα and J =

∫∞
−∞ α

2e−α
2
dα.

• To compute the integral I =
∫∞
−∞ e

−α2
dα we will compute instead I2 =

∫∞
−∞

∫∞
−∞ e

−(α2+β2)dαdβ.
Going to polar coordinates (α = r cos θ, β = r sin θ) and using the Pythagoras theorem we
get

I2 =

∫ ∞
0

2πre−r
2
dr = −πe−r2

∣∣∣∞
0

= π (6)

And therefore the initial integral I =
√
π. Using this result in (4) we get the total mass

A · Cste = M as expected.

• To compute the integral J =
∫∞
−∞ α

2e−α
2
dα we introduce the other integralK(T ) =

∫∞
−∞ e

−Tα2
dα.

We have that K(T ) =
√

π
T from the previous point (to see this make the change of variable

to
√
Tα). But we also see that the initial integral we wanted to compute is related to the

derivative of K(T ) evaluated at T = 1

J = − ∂K(T )

∂T

∣∣∣∣
T=1

= −
∂(
√
π/T )

∂T

∣∣∣∣∣
T=1

=

√
π

2
(7)

Using this result in (5) we get the variance σ2 = 2Dt.

Problem 3

• It is interesting to remark (see Figure 1) that in one dimension, if we take a sufficient number
of steps, the random walk will alway return to the origin after some time. For the random walk
in two dimensions this fact is still true. In three dimensions, however, there is a probability
that the walk does not return to the origin even after an infinite number of steps. In other
words: ”A drunk man will find his way home but a drunk bird may get lost forever”!
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Figure 1: realizations of the random walk in one dimension

• The law of large numbers tells us that if we take the average over a sufficient number of
realizations we will converge to the real expectation value. From Figure 2 we see that the
average distance squared is proportional (actually even equals for the case we consider !) to
the number of steps (in accordance with the result of the lecture since the number of steps is
itself proportional to the time).

• The maximal distance squared is proportional to the number of steps squared if we take a
sufficient number of realizations (i.e. much larger than the number of steps, see how it begins
to fail on Figure 3 when the number of steps is too large). The distance dmax = n2 with n
the number of steps corresponds to a trajectory where all the steps go in the same direction
(+1 or −1).
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Figure 2: average and maximal distance squared over several simulated realizations of the random
walk

• The central limit theorem tells us that the distribution of the sum of a large number of
independent and identically distributed random variables follows a Gaussian distribution
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(also called Normal distribution). This can be observed from Figure 3. It is necessary to take
a sufficient number of walkers to get a ”nice” Gaussian shape.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 104 1D Random Walkers − 1000000 walkers, 100 steps

X

N
um

be
r o

f w
al

ke
rs

Figure 3: histograms of the positions computed for several realizations of the random walk

4

http://en.wikipedia.org/wiki/Normal_distribution

